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Abstract. We consider the problem when the sliding speed of the slider has a high frequency
component. It was determined the influence of this component on the critical sliding velocity, below
which the frictional stick-slip self-excited vibrations are generated. The criterion for determining
the optimum of dynamic characteristics of the system is suggested.
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HCCJEIOBAHMUE PA3PBIBHBIX ®PUKIIMOHHBIX ABTOKOJIEBAHUI ITPU
BBICOKOYACTOTHbBIX BOSMYUIEHUAX
© Uocudg Ucaakosuu Byabdcon
DedepanvHoe 2ocydapcmeeHHoe 0100AHcemHoe 00PaA308aAMENbHOE YUPEHCOeHUe 8bICULE2O
npogeccuonanrvrozo obpazosanus Cankm-Ilemepoypeckuii 20cydapcmeenHbiil
YVHUgepcumem mexuoaocuu u ousatina, Canxm-Ilemepoype, Poccus.

Annomayun Hccreoyemces 3a0aua o nepemewjenuy Noa3yHa npu CKOPOCMU CKOTbICEHU,
KOmMopasi — co0epicum  6bICOKOUACMOMHYIO — COCMAGIAWY.  Ycemanosneno, umo  sma
COCMABNAIOWASL MOHCEM CYUJeCMBEHHO 6IUAMb HA KPUMUYECKYI0 CKOPOCMb, HUdNCe KOMOPOU
6030ydICOatOmMCs paspviéHvle pukyuonHvle asmokonebanus. Ilpednodcen kpumepuii 051 6blOOPA
ONMUMATILHBIX OUHAMUYECKUX XAPAKMEPUCMUK CUCTEMDbL.

Knwouesvie cnoea: ¢puxyuonnvie asmorkoneOaHUs; 6blCOKOUACMOMHOE B030YJHcOeHue;
KPUMUYeCcKas CKOpOCmy CKOJIbIHCEHUS.

When operating machinery the frictional oscillations occur most often under slow movement
of the sliding boxes on guides or under shaft’s rotation at small angular velocities. In particular the
movement with periodic stops can occur in machine tools when moving heavy units instead of the
required uniform motion. This exclude the possibility of precise tool feed. A similar phenomenon
is observed in the drawing rollers of the spinning machines, in which the frictional self-oscillation
causes yarn unevenness and increases its breakage. The problem of frictional self-oscillations is the
subject of many studies, a review of which is not given here [1]. We confine ourselves to the brief
information on the conditions of excitation of frictional self-excited oscillations and taking into
account the influence of high-frequency disturbances on these conditions [2- 9].

Let us turn to the model shown in Fig. 1.

Vo V = V4G

—_— C

1" 2

b4 TTTT7 77

Fig. 1. Dynamic model
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Let us imagine that from link 1, moving with constant velocity v, >0, motion through

elastic dissipative element 2 is transmitted to unit 3, having mass m, to which the force of friction
H is applied. As the generalized coordinate, we accept the deformation of the elastic element ¢ .

Then, the velocity of the link 3 is equal tov =V, + ¢g. Obviously, under H = H, =const, we have
q=—H,/c=const, and therefore v =V,,. However, the frictional force depends on many factors,
including sliding velocity and, therefore, in general, H(v)#constat that ¢#0. We assume
simplified characteristics of the frictional forces, according to which the absence of sliding (v =0),
frictional force is equal to the force of static friction H =H, and under motion (v>0)
H=H <H,.

Let us write the differential equation for the phase of mass m movement (0 <7 <t,)

where b =V,/cm/(2T) is the factor of equivalent linear resistance; y is the dissipation factor.

Transform (1) to the form
G+k*’q=—H,/m-2ng.
Here k> =c/m; 2n=b/m.
Let’s input “dimensionless time “ ¢ = k¢ . Then
4 +q=A(q), 2)
where A=—F,/c-28q"; 8=n/k =0,/(2m) ; the derivative with respect to @is denoted with prime
mark.

The phase-plane portrait shown in Fig. 2, for several typical cases, corresponds to (2). Let’s
consider first of all the case, when there is no linear resistance (6 =0). At the same time in the area

of motion, the phase trajectory is presented as a circle centered at the point A, =—H /c (Fig.2,
curve 1).

¥=q

Fig. 2. Phase-plane portrait

Let’s establish initial conditions. The movement begins only when the restoring force
balances the force of static friction. When =0 we haveg, =—H,/c . The second initial condition

is determined on the basis of the obvious equalityv =v, + g, =0; hence ¢, =-v,. The point N,
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with coordinates x,=g,and y,=gq, =-v,/k corresponds to the initial conditions in the phase

plane.
Movement of mass will continue as long as the phase trajectory will not come to the
point N,. The value v=v,+¢ =0 corresponds to this point, so the frictional force becomes equal to

the force of static friction H,. In the zone of dwell y =—v,/k = const, the plot phase trajectory is a
straight line N, N,. Further, the above-described oscillatory process is repeated. Thus, uniform

motion of input link 1 transformed into relaxation oscillations with dwells (stick-slip motion). The
area of movement corresponds to the angle @, =2(t—¢@,) and time interval ¢, = @, /k [corresponds

to the area of movement]. The angle @, is defined as
¢, =arctan|(x, —A.)/ y,| = arctan[kAH /(cv,)] . 3)
Here AH =H,—H, is the difference between static and sliding friction.
We will find the period of self-excited oscillations T=¢,, from the obvious equality of the
distances passed with the link 1 and mass m for one cycle
As=v,T=vt +q(t)—q,,
where ¢(t,)—q,=N,N,=2AH/c.
Considering, t, =@,/ k =2(T—@,)/ k , we get

T=2(—-¢,)/k+2AH /(cv,) 4)
The dimensionless value of the period of self-excited oscillations is equal to
¢, =kT=27+2(tan@, — @) . 5)

It follows from (3)—(5), that when AH — 0, we have ¢, -0, T—=2n/k, ¢, = 27.

The amplitude of oscillations A, is determined as

Ay =32+ 2 =J(AH [ ¢)* + (v, 1k)* . (©)

Next, we take into account the effect of the linear resistance, the influence of which will manifest
itself in the fact that the amplitude will decrease by the law A= Ae™™ . At the same time the phase
trajectory (curve 2) is located within a circle 1 of radius A, and the dwell begins at the point N .
The graph ¢g(f) shown in Fig. 3, a corresponds to this case. However it may be, that

Voin = Vo + ¢ >0 and therefore g . >—v,. Then the area of dwell is absent and oscillations will

attenuate by exponential law (Fig. 3, b). At that the phase trajectory takes the form of curve 3 (see
Fig. 2).

Fig. 3. To the determination of the dwell area
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. The critical value of v; , which separates these two cases, corresponds to the point of

touching of the phase trajectory with the straight line /N,/N,. The analysis shows that the influence
of linear dissipation on the position of the point contact is negligible and it is located in the vicinity
of N.. At that

Ak exp(—nt;) = vy, (7)
where, t, =t =(2T—@,)/k . (The parameters values corresponding to this critical case are marked

with the asterisk.)
On the basis of (7) and phase-plane portrait analysis, we get

cos @ = v, /(kAy) = exp[—0,(1— @,/ 2m)] .
Here ¥, is the logarithmic decrement
It follows from here that

V,(1-@, /2%) =—In(cos @) . (8)

On the basis of (8) when 0.2<9,<0.8, we get @, =[1/6+71/3].
Next, using (6), (7), we finally get

v = k AH _ kAH [1-vy, , ©)
c\/exp(Zﬁl)—l c v,

where, 9, =0,(1-¢,/27)=[5/6+11/12]8,; y,=1—exp(-209,) are the corrected values of

logarithmic decrement 9, and dissipation factor .

Taking into account the degree of validity of the initial information and smallness of the corrected
modification, we can accept &, = ¥,; Y, =V, .

It should be emphasized that it is the dissipative properties of the drive, which determine the
final value of the v;, since when y, — 0, we have v; — oo, This means that, excluding the linear
resistance, we can see that the self-excited oscillations of the considered type can occur at any
velocity V,. Typically, the critical Velocityvz is sufficiently small. Suppose, for example,
k=100s", Af =0.05; 9, =0.2. At that @, =0.584rad ;v, =0.741-107 m/s.

As it was already mentioned, while designing machine tools, devices and other equipment,
occurring in case of frictional self-oscillations, transformations of uniform movement into stick-slip
movement (i.e. motion with dwells and jumps) is highly undesirable. The point is the value of jump
As ultimately determines the so-called positioning accuracy, i.e. realized accuracy of the executive
body in achieving the specified position.

We consider two critical cases for estimation of As. In case of velocity v,, nearest to the

critical value of v, we have @, = 2n—@,, where @, =®,(v,). Then
As. =V, (2m~9y)/ k+q(t) ~ g,
In this case Ag=q(t,)—q, = N.N,=V .k tan@, =AH /c. It follows that
As. = (v, 1 k)[21—arctan(kAH ) /(cvy)]+AH / c .
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The period T, = As, /v, corresponds to this jump. When velocity V, transits through critical

value of V; period decreases with a jump to the valuet=2m/k, ie. by the value of
AT, = (tan@, —@,)/ k. Under accepted initial data, we have @,=0.584rad; As.=0.471mm;
T, =6.36-107s; AT, =7.68-107's.
The other critical case is realized when v, /k <AH /c. Such a situation occurs in case of
small driving velocity. In this case @, — 7/2. Then, in accordance with (4)
T=n/k+2AH /(cv,) = 2AH /(cV,);
As=7v,/k+2AF /c=2AH /c. }

In this critical case, we see the clear manifestation of another curious feature of frictional
self-oscillations. As it follows from (10), the period of self-excited oscillation, now, is practically
determined by the time interval of mass dwell, when the deformation of the elastic element takes
place. Further mass almost instantly "jumps" to the value of As.

At that the oscillations turn out to be essentially discontinuous. The malleable drive in this
case acts as the energy storage device and appears to be a kind of mediator between the external

(10)

source and the oscillatory system. As value of V|, approach the critical value of VZ the frictional
form of self-oscillations becomes less pronounced.

Further we will assume that the speed, of sliding along the guides, has a high-frequency
component v+amsin®f, where a is the amplitude of oscillations (> k). This situation in
particular occurs under the high frequency vibration of the entire system, which leads to the
additional kinematic excitation of the moving mass. Maximum of velocity oscillations, with a

frequency k is determined by the dependence v = k\/ (AH/ c)2 + (v/k)2 .

When o>k we have z=v; /(aw),and at high frequencies ®, even very small amplitudes of

the high-frequency excitations a can lead to a significant decrease in the value of parameter z and
functions ®(z)(Fig.4) [3-5]. In the considered model the difference between frictional forces

AH_ =AH®(z) and dissipation factor Y, =y, ®P(z) is corrected simultaneously; here index z
corresponds to taking into account the high-frequency oscillations.
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Fig. 4. Graph d(z)

On the basis of (9)

kAH
v**zT\/CID(l—\uqu)/wo , (11)
where, Vi is the critical velocity, taking into account the high-frequency component of oscillations.
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Equation (11) shows the opposite trend with decreasing ®. This is related to the fact that, the
efficiency value of the differential frictional forces AH ,and the dissipation factor ,, of the drive

V., decrease simultaneously. The first of these factors leads to a decrease in V., and the second -

to increase. In Fig. 5,a is shown the graphs f(z,y,)=v,../w and the locus of points max f(z).
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Fig. 5. Graphs f(z,V,), K(z2.y,)

On the basis of (9) and (11) Vs =K (D), where the correction function K(®) has the
form

K(®)= \/QD(I -y, @) /(1-y,). (12)
According to (12) max K(®) corresponds to the condition ® =®, =1/(2y,). As ®<1 when
Y,<0.5 Pe [O,QD*] function K(®) on the whole interval [0,1] is increasing. When y,> 0.5,
®e [0,P:] the function K(®) increases, and when ®e [P+,1] it decreases. . Figure 5,b shows a

family of curves K(z,y,).
The analysis shows that to reduce the critical speed of excitation of self-oscillations, more
than two times, when @, >0.25, it is necessary that ®<0.2, at that z<0,4. Similar dynamic

effects can also occur in case of the high-frequency excitation in the direction perpendicular to the
plane of motion [9]. One way to eliminate the identified "jumps" is to use the materials with low
difference between coefficients of friction in rest and motion, such as filled fluoroplasts (PTFE,
teflon, flourlon) paired with tempered steel. Of course, a more radical way is to start using [motors]
drives with ball bearings, in which the sliding friction is completely eliminated. However, in this
case usually the reduced stiffness of the drive is decreased and the lower natural frequency
increases, which is related to the elimination of the effect of self-braking, which in the given case
acts positively, reducing the “length” of kinematic chain of the drive, which is prone to excited
oscillations.

In conclusion, we will note that the occurrence of differential friction forces AH , according to
modern ideas, is treated as feedback broadband random disturbances, arising during sliding of
rough deformable bodies. The friction itself, strictly speaking, is formed in an oscillating system
directly by the locally occurring dynamic processes. Therefore the use in the engineering
calculations the quasi-static friction characteristics is approximate.
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